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This report presents an analytic treatment concerned with a particular guidance

technique applicable to managing the flight path of gliding vehicles or gliding decelerators.

This study was conducted under Department of the Army Project No.
1F2662203AA33. Guidance anc¢ Control of Gliding Decelerators.




NOMENCLATURE
Lift to Drag Ratio
Time
Horizontal Component of Tcta! Airspeod Vector
| Y |, Horizontal Airspeed
System Total Airspeed Vector
Radial Offset Angle
Wind or Field Velocity
| W |, Wind or Field Speed
Horizontal Space Coordinate Fixed to Earth
Horizontal Space Coordinate Perpendicular to x and fixed to earth
Vertical Space Coordinate Perpendicular to the x-y Plane
Magnituda of the radius Vector in Polar Coordinates
Angular Position in Pola: Coordinates

u/w Wind Penetration Parameter.

Initial
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INTRODUCTION

Automatic control of a vehicle in gliding flight poses some interesting problems
particularly when aerodynamic performance is limited. A remotely guided recovery system,
utilizing some form of gliding deceleration!, is an example of such a case. Typically,
these systems operate at relatively low airspeed with virtually no capacity for L/D
modulation. Discrete or continuous regulation of flight direction then becomes the
principal means of trajectory control. Consequently, investigations concerned with this
specific aspect of flight path management, take on practical significance with respect to
evaluat.ng the cupabilities of various steering or homing techniques applicable to the
guidance of an unpowered gliding vehicle.

Analysis cealing with controlled gliding flight, can cover a broad spectrum ranging
from the application of Optimal Control Theory? to investigations concerned simply with
the geometry of the motion.> Contrasting the numerical trajectory determirations which
follow from treatments such as those developed in References 2 and 3, the results of
this study are analytic in scope. A class of closed form solutions are derived from kinematic
considerations of & particle maneuvering with constant speed through a uniform velocity
field. This representation serves to approximate the behavior of a gliding system executing
moderate tums in a constant wind environment. Assuming a specific guidance law, or
what amounts to a directional constraint on the airspeed vector eliminates dynamic
considerations. Consequently, velocity relationships can be derived directly and solutions
for position and time coordinates ubtained by integration. These results serve to quartify
the performance of the assi'/med guidance law while providing valuable insight into
generalized capabilities.

ANALYSIS

The guidance law or controller used in this formulaticn is thought of as one which
causes the system to maintain a fixed angular orientation between the horizontal projection
of its airspeed vector and a radial line connecting it to the intended target. Figure (1)
depicts the planar geometry of this motion, introducing the idea of what shall be now
termed “Azimuth Homing”. The system is idealized as a point mass and under the
combined assumptions of constant L/D and moderate turns, only the horizontal coordinates
remaln coupled. The vertical mode, not shown in Figure (1), Is linear with time t, as
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Indicated by equation {3). The vector quantity U defines the horlzontal component of
thu total airspeed vector V. U is constant In megnitude, however, Its direction may be
varled according to control inputs. Azimuth Homing, as defined, constrains U to
continuously point along the current radlal at some fixed angular offset a. The witid,
or field velocity, W, is assumed to be jsteady, to lie entirely in the x — y plane, and
to point along the y axis in a negative sense. Motlon through the wind field serves to
upset kinematic equilibrium and as a consequence, the system is always in a state of
maneuver.

It is now possible to derive a vector equation relating the absolute velocity of the
system relative to an earth fixed reference, to the sum of V and W. Expressed in cylindrical
cocrdinates the scalar equations obtained from this vector equality are:

dr/dt = —w(Acosa+sing), (1)
(r)d6/dt = —w(Asinc+cosh), (2)
dz/dt = (-u)/(L/D), (3)

where r, ¢, and z are the conventional cylindrical coordinate designations.
TRAJECTORY DETERMINATION

General Formulation: Separating the time dependency from equations (1) and (2) ylelds
the expression;

dr/r = (Acosx)df/(hsinartcosd) —d{cosd)/(Asina+cosd). (4)

Motivated by physical considerations, solutions to this differential form may be divided
into two rategorles, classifled according to their ‘‘Target Seeking”’, or “Target Orbiting”
propertles. These clessifications occur naturslly reflecting the system’s capacity to sustain
angular motion with respect to the terget. This abllity Is evident from equation (2) through
investigation of the parameter Asina. When | Asina | <1, convergence to a particular
ray results. Given sufficlent effective wind penetration, the system will seek this stable
angular alignment as r spproaches zero. Hence, the terminology, '“Target Seeking'.
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Alternatively, cyclic or orbital paths can be described when | asina | >1. This velocity
condition allows for continuous angular motion about tha homing point from ali locations
in the wind field.

Prior to integrating (4), a simplified and physically revealing version can be obtained
through the variable transformation;

cosf = (cosB — €)/(1-ecosh), (5)

where § is the so called “Eccentric Anomaiy’’, a nomenclature originating from the
devalopment of this equation in Orbital Mechanics. The marnitude of e defined by (5)
is constant for values between zero and one, and for the purposes of Azimuth Homing
assumes the role of Asina or (1/Asina) depending upon the application.

Target Seeking Trajectories: ¢ = Asina for | Asina | <1. Transforming (1), (2) and (4)
to r, § spare yields;

dr/dt = —w(1—€?)" [[(\2—€2)/(1—€?)] % +sinf/(1—ecosf) ], (6)
rd/dt = —w(1—e?)“cosp, 7
dr/r = [(K’-e’)/(l—e’)]% (dB/cosp)—d(cosB)/cosB(1—ecosf). (8)

Equation (8) is integrated diiectly to give;

r = KsocB(1—ezosh) [secg+tang] [(N*—¢* /(1—€2)) %, ()

where K is an integration constant.

The effect of the 8 transformation can now be appreciated by allowing ¢, in equations
(5) through (9) to approach zero whila A is constrained to remain finite. In terms of
physical coordinates this defines the special case of “Radial Homing”’.* A comparison
between equations (6) and (9) for arbitrary e, with those produced when € = 0 reveals
their simllarit\}, particularly regarding equations (7) and (9). It can be concluded, based
on this similarity, that Azimuth Homing, constrained such that | Asince | <1, ie a general




fcrm of Radisi Homing when viswed in r — § space. Therefore, the terminal state
capebiiities of Radial Homing derived from the physical piane estabiishes these
characteristics for an entire Aziinuth Homing famiiy. The significant features of thase
trajectories are summarized as follows.

Launched &t sufficient sititude, an Azimuth Homing system will reach the target
or hocming point prior to impact Zrovided it has the ability to penetrate the wind, i.e.
when the systems “Generaiized Wind Penetration Parameter” [\ —e?/1—¢?]%>1, At
targat arrival the absolute or rasultant velocity vector wlil be aligned in a negative sense
alos © the f = —x/2 ray. The arbitrary clignment of the wind veiocity with the y axis,
which assisted in the formulation of the basic theory, has no bearing on these results.
Any other axic selection mereiy constitutes a rotation of the resulting trajectory relative
1o these primarv <oordinates producing no effect on the end state. The terminal
cheracturistics, (=0, f=—n/2), are also essentiglly independent of initial homing conditions
determined by the algebraic sign of e.

Orbital Trajectories: ¢ = (1/xsina) for | (1/Asina) | <1. Transforming (1), (2) and (4)
o r — § space yields;

dr/dt = (—w/e)[1—€*) A[b/(1=-2)% +esing/(1—ecosd) ], (10)
rdf/dt = (—w/e)[1—€*] %, (1
and, dr/r = (b/[1—¢?] %)dB—d(ecosB)/(1~ecosf), (12)

where b = ctna,
Fquation (12) is integrated directiv to give:
i = G(1-ecosg)elt/[1-€3178, (13)

where G is an integration constant.
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The net behavior of (13) can be determined by considering separately, the properties
of the trigonometric and exponential factory which combine to form r. The quantity
(1--ecosf) is identified as a polar representation describing one ~f the Limacon’s of Pascal,
thereby defining a closed curve in the r — § plane. The equivalent figure in physical
coordinates is an ellipse and comprises the entire trajectory when « is allowed to assume
either of its extreme values (i.e. when ¢ = tx/2). Overail, angular motion relative to
the target can be positive or negative depending upon the abitrary sign of the raaial
offset angle a. Regardless of the sense of change in § or 0, the argument of e remains
negaiive. Consequently, the exponential terms always acts as a damping factor, continually
suppressing radial excusions in successive cycles about the focal point. Given the nature
of the functions defining (13), the trajectories so generated may be properly termed
""Elliptic Spirals'’.

LAUNCH CRITERIA

It is now desirable to obtain solutions in terms of the time or altitude coordinaw.
Such relationships will be necessary in order to identify spacial lacations compatible with
the trajectories previously nbtained. Returning to equations (2), un2 (3);

dt = (—L/D)/u)dz = [(—1/w)rd6] /[Asina+cose), (14)
where r is now a known function of g, or 8.

Solutions to (14), which exist at least in principle, can now be attempted for both
the Target Seeking and Target Orbiting cases.

Time Integral:

Two forms of aquation (14) are generated by the respective utilization of equations
71 and (8) or equations (11) and (13). The Target Seeking form of (14) is;

(LD) (zi/u) = (—K/w[1-€*;%) [ f sec*B(1—ecos)(sect+tang) [N’ —€* M (1-€' )] %46}
(15)
The Target Otbiting Version of (14) becomes;
(L/D) (zj/u) = —Gelwl1—€?]% | (1-ecosf) e‘b/[‘—'-’”/'ﬁdﬂ. (16)
5
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where in both cases integration on altitude passes from the initial point z; to the ground
plane (z=0). Radial and angular coordinates proceed from the initial state r;, 8; to final
positions r, & which now specify the systems location at impact. Both (15) and (16)
can be integrated by parts oroducing the following solution which holds for either
circumstance.

(L/D)zjcosa/u) = [NM(N?=1)] [A—sin(8j—a)] [1—(r/r;}{(A=sin{f—a))/(A—sin(B;—a))], (17)

where the position coordinate r is given by (9) for trajectories in the target seeking domain
or by (13) for the target orbiting case.

Release Path Definition:

Given a specified launch or initial aititude zj, system parameters in terms of L/D,
a, and A which reflects wind properties as well, the following physical interpretaticn can
be attached to equation (17). Allowing for sufficient performance in terms of either
wind penetration ability, or the potential to execute multiple orbits about the homing
point, r can ba made to approach zero in {17). Then, relative to a known nominal wind
direction, the curve so described by these equations defines the locus of points (z;, rj,
6;) from which an Azimuth Homing trajectory will terminate precisely on target. Equation
(17), with r = 0 the final state, ident:fies this release path or launch curve as an ellipse.
It follows from these developments, that trajectories beginning incide the ellipse will arrive
too early, (i.e. an excess altitud~ condition), while those initiated outside will fall short.

SUMMARY AND CONCLUSIONS

Analysis of a particular guidance technique applicable to gliding vehicle flight path
control has been presented. The development has proceeded through three phases as
follows; (1) Formulation of kinematic behavior, leading to the derivation of basic
relationships, (2) Mathematical transformation of variables with subsequent solution to
the governing differential equations, and finally, (3) Classification and interpretation of
results according to the dictates of key parameters.

The Azimuth Homing guidance technique has been shown to possess desirable
performance particularly regarding the ability to either maintain position relative to a
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homing point in a captured spiral orbit, or to achieve absolute target convergence in the
horizontal plane. Since guidance is derived exclusively through management of flight
direction, consistent accuracy will not be possible in general circumstances. However,
a scheme employing this form of guidance ugmented by computations utilizing position
measurements could be used to control the entire flight. The radial Offset Angle (a),
being capable of discrete variation, can be utilized sc as to adjust the trajectory to account
for uncontrollable changes in wind velocity. The Wind Penetration Parameter (A\) may
also be considered as a control parameter assuming some L/D modulation were possible.
Theoretically, and within the spacial locations where terminal solutions to the Azimuth
Homing problem exist, the eritire landing state could be controlled.
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~TYPICAL TRAJECTORY

! FIG. 1 Kinematics of Azimyth Homing
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